Adaptation of sucrose metabolism in the Escherichia coli wild-type strain EC3132.
نویسندگان
چکیده
Although Escherichia coli strain EC3132 possesses a chromosomally encoded sucrose metabolic pathway, its growth on low sucrose concentrations (5 mM) is unusually slow, with a doubling time of 20 h. In this report we describe the subcloning and further characterization of the corresponding csc genes and adjacent genes. The csc regulon comprises three genes for a sucrose permease, a fructokinase, and a sucrose hydrolase (genes cscB, cscK, and cscA, respectively). The genes are arranged in two operons and are negatively controlled at the transcriptional level by the repressor CscR. Furthermore, csc gene expression was found to be cyclic AMP-CrpA dependent. A comparison of the genomic sequences of the E. coli strains EC3132, K-12, and O157:H7 in addition to Salmonella enterica serovar Typhimurium LT2 revealed that the csc genes are located in a hot spot region for chromosomal rearrangements in enteric bacteria. The comparison further indicated that the csc genes might have been transferred relatively recently to the E. coli wild-type EC3132 at around the time when the different strains of the enteric bacteria diverged. We found evidence that a mobile genetic element, which used the gene argW for site-specific integration into the chromosome, was probably involved in this horizontal gene transfer and that the csc genes are still in the process of optimal adaptation to the new host. Selection for such adaptational mutants growing faster on low sucrose concentrations gave three different classes of mutants. One class comprised cscR(Con) mutations that expressed all csc genes constitutively. The second class constituted a cscKo operator mutation, which became inducible for csc gene expression at low sucrose concentrations. The third class was found to be a mutation in the sucrose permease that caused an increase in transport activity.
منابع مشابه
Construction of homologous and heterologous synthetic sucrose utilizing modules and their application for carotenoid production in recombinant Escherichia coli.
Sucrose is one of the most promising carbon sources for industrial fermentation. We expressed synthetic modules expressing genes of the PEP-PTS and non-PTS pathways in Escherichia coli K12 for comparison. We selected PEP-PTS pathway genes of Lactobacillus plantarum and Staphylococcus xylosus and non-PTS pathway genes of sucrose-utilizing (Scr(+)) E. coli EC3132. Switchable Scr(+) modules expres...
متن کاملConstruction of an iss deleted mutant strain from a native avian pathogenic Escherichia coli O78: K80 and in vitro serum resistance evaluation of mutant
BACKGROUND: Colibacillosis, caused by different serotypes of avian pathogenic Escherichia coli (APEC), is one of the important diseases in poultry industry. The isolate O78 is the most prevalent serotype of APEC in Iran. One of the APEC virulence factors, increased serum survival (iss) gene, is related to serum resistance. The usual form of colibacillosis in avian is extraintestinal, and serum ...
متن کاملGenetic Transformation of Amylase Gene to Ruminal Bacteroides Species Using Conjugation Consequence for Improvement of Rumen Enzyme
Rumen bacterial strains can potentially be manipulated to perform functions different from wild type species. The most numerous species of bacteria in the rumen and gut are species of the familyBacteroidetes, whichcan have the potential for genetic modification for enzyme production. One of the genetic manipulation of rumen bacteria can perform for production of starch digestive enzyme for the ...
متن کاملCompensation of the metabolic costs of antibiotic resistance by physiological adaptation in Escherichia coli.
Antibiotic resistance is often associated with metabolic costs. To investigate the metabolic consequences of antibiotic resistance, the genomic and transcriptomic profiles of an amoxicillin-resistant Escherichia coli strain and the wild type it was derived from were compared. A total of 125 amino acid substitutions and 7 mutations that were located <1,000 bp upstream of differentially expressed...
متن کاملCharacterization of an Interesting Novel Mutant Strain of Commercial Saccharomyces cerevisiae
The yeast strains that are resistant to high concentration of ethanol have biotechnological benefits and aresuitable models for physiology and molecular genetics research fields. A novel ethanol-tolerant mutant strain,mut1, derived from the commercial Saccharomyces cerevisiae showed higher ethanol production, and alsodemonstrated resistance to ethanol but not to other alcohols...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 184 19 شماره
صفحات -
تاریخ انتشار 2002